
Module-3: Analytic Functions-II

1 Introduction

To make the C-R equations as sufficient, an additional condition on partial derivatives

is essential and this is the condition of continuity.

Theorem 1. (Sufficient Condition for Analyticity)

A single valued continuous function w = f(z) = u(x, y) + iv(x, y) is differentiable in

a domain D if the four partial derivatives ux, uy, vx, vy exist, are continuous and satisfy

C-R equations at each point of D.

Proof. We have to show that f ′(z) = lim
∆z→0

∆w

∆z
exists at each point of D. Let z = x+ iy

be any point of D. Since ux, uy, vx, vy exist and continuous at (x, y), u(x, y) and v(x, y)

are differentiable at (x, y). Therefore,

∆u = u(x+ ∆x, y + ∆y)− u(x, y)

= ux∆x+ uy∆y + ε1∆x+ ε2∆y,

where ε1, ε2 → 0 as (∆x,∆y)→ (0, 0), and

∆v = v(x+ ∆x, y + ∆y)− v(x, y)

= vx∆x+ vy∆y + η1∆x+ η2∆y,

where η1, η2 → 0 as (∆x,∆y)→ (0, 0).

Since u and v satisfy C-R equations at (x, y), we have

∆w = ∆u+ i∆v

= ux(∆x+ i∆y) + vx(i∆x−∆y) + (ε1 + iη1)∆x+ (ε2 + iη2)∆y. (1)

From (1) we get

∆w

∆z
= ux + ivx + (ε1 + iη1)

∆x

∆z
+ (ε2 + iη2)

∆y

∆z
. (2)
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Now

| (ε1 + iη1)
∆x

∆z
| = | ε1 + iη1 ||

∆x

∆z
|

≤ | ε1 | + | η1 |→ 0 as (∆x,∆y)→ (0, 0) i.e. as ∆z → 0.

Similarly we can get

| (ε2 + iη2)
∆y

∆z
|→ 0 as ∆z → 0.

Thus taking limit as ∆z → 0 we obtain from (2)

lim
∆z→0

∆w

∆z
= ux + ivx.

Hence f ′(z) exist and is equal to ux+ ivx. Since z is any point in D, f(z) is differentiable

in D. This proves the theorem.

Example 1. Let f = u+ iv be analytic in a domain D. Show that f is constant in D if

f ′(z) ≡ 0 in D.

Solution. Since f = u + iv is analytic in D, it is differentiable there and satisfies the

C-R equations in D. Now f ′(z) = 0 implies ux + ivx = 0. That is ux = 0 and vx = 0.

So using C-R equations we have uy = 0 and vy = 0. Thus

du = uxdx+ uydy = 0

i.e. u = constant.

Similarly we obtain v = constant and so f(z) = u+ iv is constant.

Theorem 2. Let f(z) = u + iv be analytic in a domain D and | f(z) | is equal to

constant in D. Then f(z) is constant in D.

Proof. Let | f(z) | = c, say. Then u2 + v2 = c2. Differentiating with respect to x and y

we get respectively

uux + vvx = 0, (3)

uuy + vvy = 0. (4)

Using C-R equations ux = vy and uy = −vx, we obtain from (4) that

−uvx + vux = 0. (5)
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From (3) and (5) we get (u2 + v2)ux = 0. Now u2 + v2 = 0 implies u = 0 = v and hence

f(z) = 0, a constant function. If u2 + v2 6= 0, we have ux = 0. Similarly from (3) and

(5) we get vx = 0. Hence ux = vx = uy = vy = 0. Thus

du = uxdx+ uydy = 0

i.e. u = constant.

Similarly we obtain v = constant and so f(z) = u+ iv is constant.

Theorem 3. Let f = u + iv be analytic in a domain D. Then f is constant in D if

arg f(z) is constant in D.

Proof. Let arg f(z) = c1, a constant. Then v = cu. Differentiating with respect to x

and y separately, we get

vx = cux, vy = cuy.

This gives

f ′ = ux + ivx = (1 + ic)ux.

Again

f ′ = vy − iuy = vy −
i

c
vy

= (1− i

c
)vy = (1− i

c
)ux.

If ux = 0 then f ′ = 0, which gives f is constant. Thus ux 6= 0. Therefore,

1 + ic = 1− i

c

i.e. c2 = −1

i.e. c = ±i.

If c = −i, then vx = −iux and vy = −iuy. Hence

f ′ = (1 + ic)ux = 2ux

f ′ = vy − iuy = −2iuy,

which is not possible. Therefore c = i and f ′ = (1 + ic)ux = 0. This shows that f is

constant.
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Example 2. Show that the function f(z) = xy+ iy is everywhere continuous but is not

analytic.

Solution. Let f(z) = u + iv. Then u = xy and v = y. Since u and v are continuous

everywhere, f(z) is continuous everywhere. Now,

∂u

∂x
= y,

∂u

∂y
= x,

∂v

∂x
= 0,

∂v

∂y
= 1.

Since

∂u

∂x
6= ∂v

∂y
and

∂u

∂y
6= −∂v

∂x
,

f(z) is not an analytic function.

Example 3. If u = (x− 1)3 − 3xy2 + 3y2, find v so that u+ iv is an analytic function

of x+ iy.

Solution. Here ∂u
∂x

= 3(x− 1)2 − 3y2 and ∂u
∂y

= −6xy + 6y.

By C-R equations we have

∂v

∂x
= −∂u

∂y
= 6xy − 6y.

Integrating with respect to x we get

v = 3x2y − 6xy + f(y). (6)

This gives

∂v

∂y
= 3x2 − 6x+ f ′(y).

Also ∂v
∂y

= ∂u
∂x

= 3(x− 1)2 − 3y2. Hence

3x2 − 6x+ f ′(y) = 3(x− 1)2 − 3y2

i.e. f ′(y) = 3− 3y2.

Integrating we get f(y) = 3y − y3 + c, where c is a constant. Substituting this value of

f(y) in (6) we obtain

v = 3x2y − 6xy + 3y − y3 + c.

Example 4. Given that the function f(z) = u(x, y) + iv(x, y) is analytic in a domain

D. Verify whether the functions f(z), f(z), f(z) are analytic or not in D.
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Solution. Since the function f(z) = u(x, y) + iv(x, y) is analytic in a domain D, we

have

ux = vy and uy = −vx

for all points of D. Now

f(z) = u(x, y)− iv(x, y) will be analytic if

ux = (−v)y and uy = −(−v)x

i.e. ux = −vy and uy = vx,

which is not the case. Hence f(z) is not analytic in D.

Again f(z) = u(x,−y) + iv(x,−y) will be analytic if

ux = v−y and u−y = −vx

i.e. ux = −vy and uy = vx,

which is not the case. Hence f(z) is not analytic in D.

The function f(z) = u(x,−y)− iv(x,−y) will be analytic in D if

ux = (−v)−y and u−y = −(−v)x

i.e. ux = vy and uy = −vx.

Therefore, f(z) is analytic in D.

Example 5. Show that the function f(z) = 1
z4
, z 6= 0 is differentiable in indicated

domain and find f ′(z).

Solution. Here we consider the polar system. The given function is

f(z) = r−4(cos 4θ − i sin 4θ).

Therefore,

u(r, θ) =
cos 4θ

r4
, v(r, θ) = −sin 4θ

r4
.

Thus

ur = −4 cos 4θ

r5
, uθ = −4 sin 4θ

r4
, vr =

4 sin 4θ

r5
, vθ = −4 cos 4θ

r4
.
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The first order partial derivatives of u and v, being rational continuous functions with

non-vanishing denominators, are continuous. Also, the C-R equations

ur = −4 cos 4θ

r5
=

1

r
vθ, and vr =

4 sin 4θ

r5
= −1

r
uθ

are satisfied. This concludes that f ′(z) exists and

f ′(z) = e−iθ(ur + ivr) = e−iθ
(
−4 cos 4θ

r5
+ i

4 sin 4θ

r5

)
= − 4

(reiθ)5
= − 4

z5
.
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